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Local order controls the onset of oscillations in the nonreciprocal Ising model
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We elucidate the generic bifurcation behavior of local and global order in the nonreciprocal Ising model
evolving under Glauber dynamics. We show that a critical magnitude of nearest-neighbor correlations within the
respective lattices controls the emergence of coherent oscillations of global order as a result of frustration. Local
order is maintained during these oscillations, implying nontrivial spatiotemporal correlations. Long-lived states
emerge in the strong-interaction regime. The residence time in either of these states eventually diverges, giving
rise to ordered nonequilibrium trapped states and a loss of ergodic behavior via a saddle-node-infinite-period
bifurcation. Our work provides a comprehensive microscopic understanding of the nonreciprocal Ising model
beyond the mean-field approximation.
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I. INTRODUCTION

The last decade saw a surge of interest in many-body
lattice systems with nonreciprocal interactions [1–11]. At the
microscopic level, nonreciprocal interactions violate New-
ton’s third law and result in broken detailed balance [12,13],
thereby driving the system out of equilibrium. On the col-
lective level, nonreciprocally interacting systems can resist
coarsening and self-organize into dynamic states with unique
spatiotemporal patterns, including traveling and oscillatory
states [14–22]. Phenomenologically, such systems are typi-
cally described using nonvariational couplings of Allen-Cahn
models (for nonconserved dynamics) or Cahn-Hilliard models
(for conserved dynamics), corresponding to models A and B,
respectively, as outlined in [23].

By introducing two nonreciprocally coupled Ising lat-
tices, various studies have shown under which conditions
nonreciprocity induces temporal oscillations in the magnetiza-
tion [1–7]. These works revealed intriguing phenomena, such
as Hopf instabilities [1,2,6,7], saddle-node bifurcations [7,24],
and hidden collective oscillations [2]. However, so far these
studies have been limited to phenomenological and mean-field
theory, raising the question to what extent these results apply
beyond their respective approximations.

Here, we go beyond mean-field reasoning and ex-
plicitly incorporate nearest-neighbor correlations into a
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thermodynamically consistent description of two nonrecip-
rocally coupled Ising models. We consider both global
and local order, and explain why a critical magnitude of
nearest-neighbor correlations controls the symmetry-breaking
transition in the global order, in turn bounding the onset of co-
herent oscillations. We elucidate how the bifurcation behavior
depends on the interaction strength and highlight stark differ-
ences in the spatiotemporal dynamics of all-to-all (mean-field)
versus short-range-interacting systems; the square and Bethe
lattices display equivalent behavior that is strikingly different
from the all-to-all lattice.

II. MODEL

Consider a pair of lattices denoted by μ = a, b, as shown
in Fig. 1(a), each having a coordination number z and periodic
boundary conditions. On each lattice there are N spins that can
assume two states σ

μ
i = ±1, with i ∈ {1, ..., N} enumerating

the spin’s location. Each spin interacts with its z nearest neigh-
bors on the same lattice and the spin at the equivalent position
on the opposing lattice. The local interaction energy [25] of
spin i on lattice μ can be written as

Eμ
i = −Jμσ

μ
i

∑
〈i| j〉

σ
μ
j − Kμσ a

i σ b
i , (1)

where 〈i| j〉 denotes a sum over nearest neighbors j of spin
i. Throughout, we express energies in units of kBT , where T
is the temperature of the heat bath. The parameter Jμ denotes
the coupling within lattice μ, and Kμ denotes the (directed)
coupling between the spins in μ and those of the opposing
lattice, respectively. When Ka �= Kb, equivalent spins on the
opposing lattices interact nonreciprocally.

We consider single spin-flip Glauber dynamics [26]. Let
P(σ; t ) be the probability at time t to find the system in state
σ = {σ a

1 , σ b
1 , ..., σ a

N , σ b
N }, which is governed by the master
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equation

dP(σ; t )

dt
=

∑
μ,i

w
μ
i

( − σ
μ
i

)
P(σ ′

μ,i; t ) − w
μ
i

(
σ

μ
i

)
P(σ; t ), (2)

where σ ′
μ,i = {σ a

1 , σ b
1 , ...,−σ

μ
i , ..., σ a

N , σ b
N } is a state which

differs from state σ by one spin flip. The transition rates
w

μ
i (σμ

i ) to flip a spin σ
μ
i → −σ

μ
i are uniquely specified

by limiting the interactions to nearest neighbors, imposing
isotropy in position space, and requiring that for Ka = Kb the
transition rates obey detailed balance. These physical restric-
tions then lead to the general result [1,2]

w
μ
i

(
σ

μ
i

) = [
1 − tanh

(
�Eμ

i /2
)]

/2τ, (3)

where �Eμ
i = −2Eμ

i is the change in energy on the μ = a, b
lattice after spin conversion σ

μ
i → −σ

μ
i , and τ is an intrinsic

timescale to attempt a single spin flip.

A. Global and local order parameters

We are interested in the temporal dynamics of global and
local order parameters averaged over all spins. The magneti-
zation or global order is given by [27]

mμ(t ) ≡ 1

N

N∑
i=1

〈
σ

μ
i (t )

〉 ∈ [−1, 1], (4)

where 〈 f (t )〉 ≡ ∑
σ P(σ; t ) f (σ ). The three local order param-

eters are [27]

qμμ(t ) ≡ 1

zN

N∑
i=1

∑
〈i| j〉

〈
σ

μ
i (t )σμ

j (t )
〉 ∈ [−1, 1], (5)

qab(t ) ≡ 1

N

N∑
i=1

〈
σ a

i (t )σ b
i (t )

〉 ∈ [−1, 1], (6)

with correlations

Cμν (t ) ≡ qμν (t ) − mμ(t )mν (t ). (7)

We distinguish between the local order within and between the
lattices. The alignment of spin pairs within lattice μ is quanti-
fied by qμμ(t ), and qab(t ) (also known as the overlap [28,29])
measures the alignment of equivalent spins between both lat-
tices. The normalization in Eq. (5) arises because zN is the
number of nearest-neighbor pairs (including double counting)
in a periodic lattice with coordination number z.

B. Evolution equations beyond the mean-field approximation

Our first main result is an exact set of coupled differen-
tial equations for the order parameters in the thermodynamic
limit N → ∞, which reads (see Appendix A for a detailed
derivation)

τ
dmμ(t )

dt
+ mμ(t ) =

∑
l,n

Pμ

l,n(t ) tanh
(
U μ

l,n

)
, (8)

τ
dqμμ(t )

dt
+ 2qμμ(t ) = 2

z

∑
l,n

(2l − z)Pμ

l,n(t ) tanh
(
U μ

l,n

)
, (9)

τ
dqab(t )

dt
+ 2qab(t ) =

∑
μ

∑
l,n

(2n − 1)Pμ

l,n(t )tanh
(
U μ

l,n

)
, (10)

where
∑

l,n ≡ ∑z
l=0

∑1
n=0 is a sum over all possible values of

neighboring up spins on the same (l ∈ {0, . . . , z}) and oppos-
ing (n ∈ {0, 1}) lattice, and

U μ

l,n ≡ [2l − z]Jμ + [2n − 1]Kμ (11)

parametrizes the change in energy upon flipping a spin with
such a local environment. Finally, Pμ

l,n(t ) ∈ [0, 1] is the time-
dependent probability of selecting an up or down spin that has
l neighboring up spins on the same lattice and n neighboring
up spins on the opposing lattice. The probability is normalized
as ∑

l,n

Pμ

l,n(t ) = 1. (12)

Equations (8)–(10) are not yet closed; evaluating Pμ

l,n(t ) for an
arbitrary lattice is a daunting combinatorial task, as it depends
on microscopic details and, therefore, on an infinite hierarchy
of order parameters. However, we can approximate Pμ

l,n(t ) to
different levels of accuracy, which we do in the next section.

Note that evolution equations for the nonreciprocal Ising
model on the fully connected mean-field lattice have been
constructed in [7], and are reported in Appendix E for
completeness.

C. Bethe-Guggenheim approximation

An accurate closed-form expression for Pμ

l,n(t ) can be
obtained with the Bethe-Guggenheim (BG) approximation
(or pair approximation), where we assume perfect mixing
of nearest-neighbor spin pairs. This approximation is exact
on loopless lattices such as the Bethe lattice [30], or large
random graphs with fixed coordination number [31,32]. As we
show in Sec. V, the spatiotemporal dynamics on these lattices
agree qualitatively with the behavior on the square lattice, in
contrast to that on the mean-field lattice. We split Pμ

l,n(t ) in
“up” and “down” spin contributions

Pμ

l,n(t ) = Pμ+
l,n (t ) + Pμ−

l,n (t ), (13)

where, e.g., Pμ+
l,n (t ) ∈ [0, 1] is the probability of flipping an up

spin with l up neighbors on the same lattice and n up neigh-
bors on the opposing lattice, respectively. These probabilities
are derived in Appendix B and read (omitting the explicit t
dependence on the right-hand side)

Pa±
l,n (t ) = Cz

l (1±2ma+qaa)δ
±
l (1±ma−mb∓qab)1−n

(1±ma)z(1−qaa)−δ∓
l (1±ma+mb±qab)−n

, (14)

where δ+
l = l , δ−

l = z − l , and

Cz
l ≡ 1

2z+2

(
z

l

)
. (15)

The expression for Pb±
l,n (t ) follows from Eq. (14) by inter-

changing ma ↔ mb and qaa ↔ qbb. Inserting Eq. (14) into
Eqs. (8)–(10) yields a closed system of five coupled nonlinear
differential equations.

III. LINEAR ANALYSIS AND THE HOPF BIFURCATION

We focus on the symmetric nonreciprocal setting Ja =
Jb = J and Ka = −Kb = K , also known as the perfectly non-
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FIG. 1. (a) Schematic of two Ising lattices a and b with coordination number z = 4 and cross-coupling (Ka, Kb). For Ka �= Kb the cross-
coupling is nonreciprocal. (b) Eigenvalues λ± of the linear stability matrix [Eq. (22)] as a function of the steady-state local order qs for
Ka = −Kb = 0.1. When qs � qcrit [black vertical line; Eq. (20)] the real parts of λ± are non-negative, resulting in coherent oscillations. (c)–(f)
Temporal evolution of the magnetization mμ(t ) [Eq. (4)], local order qμν (t ) [Eqs. (5) and (6)], and local correlations Cμν (t ) [Eq. (7)] for
Ka = −Kb = K = 0.1 and Ja = Jb = 0.4. Black dashed lines in (c) and (d) are obtained with Monte Carlo simulations on the Bethe lattice (see
Appendix G for details). In all panels we consider z = 4.

reciprocal setting [33], while keeping z general. We start with
the linear stability analysis of the steady states of Eqs. (8)–
(10). The trivial steady state is given by mμ

s = 0, qab
s = 0, and

qμμ
s ≡ qs(J, K ), (16)

which is explicitly given in Appendix C for vari-
ous values of z. To first order, small perturbations
δm(t ) ≡ [δma(t ), δmb(t )] decouple from perturbations
δq(t ) ≡ [δqaa(t ), δqbb(t ), δqab(t )], and we obtain the linear
equation

τ
dδm(t )

dt
=

(
M1(qs; J, K ) −M2(qs; J, K )
M2(qs; J, K ) M1(qs; J, K )

)
δm(t ). (17)

The linear equation for δq(t ) is given in [34] and does not
play any further role here. The elements of the linear stability
matrix read

M1(qs; J, K ) = qs/qcrit − 1

1 + qs

⎡
⎣1 − 2

∑
l,n

P+
l tanh

(
U a

l,n

)⎤⎦,

M2(qs; J, K ) =
∑
l,n

(2n−1)[P+
l +P−

l ] tanh
(
U a

l,n

)
, (18)

where

P±
l (qs) ≡ Cz

l (1 ∓ qs)z−l (1 ± qs)l (19)

are the probabilities (14) evaluated at steady-state values, and
we introduced the critical local order

qcrit ≡ 1

z − 1
, (20)

which only depends on the coordination number of the lattice,
and sets a critical value for the steady-state local order. The
solution of the linear stability equation can be written as

δm(t ) =
∑
k=±

Akeλkt/τνk, (21)

where A± are set by the initial conditions, ν± = (∓i, 1)T

are the eigenvectors of the linear stability matrix, and the
corresponding eigenvalues are

λ±(qs; J, K ) = M1(qs; J, K ) ± iM2(qs; J, K ), (22)

i being the imaginary unit. Since M2(qs; J, K �= 0) �= 0 (see
proof in Appendix D), the eigenvalues are complex for K �= 0

[see dashed lines in Fig. 1(b)], resulting in oscillatory per-
turbations. The Hopf bifurcation [35], also called type-IIo

instability [36], occurs when complex conjugate eigenvalues
transit the imaginary axis in the complex plane. Accord-
ing to Eq. (22) this occurs when M1(qs; J, K ) = 0 implying
qs(J, K ) = qcrit as seen from Eq. (18). The Hopf bifurcation
is thus set by the critical value qcrit for local order, and for
qs > qcrit we have Re(λ±) > 0 [solid line in Fig. 1(b)]. In
other words, when spins on the respective lattices are suffi-
ciently aligned, a transition to an oscillatory state occurs as
shown in Figs. 1(c) and 1(d).

The critical value of the local order that determines the
onset of coherent oscillations is our second main result that
generalizes to other approximation schemes beyond the mean-
field approximation (see Appendix F). After sufficient local
order is attained within the lattices, the frustration due to the
nonreciprocal coupling gives rise to coherent oscillations: for
K > 0 a spin σ a

i wants to align with σ b
i that, in turn, tends

to misalign with σ a
i . This dynamic frustration results in an

oscillatory motion of the order parameters [33]. Notably, for
the one-dimensional lattice (z = 2) we see from Eq. (20) that
qcrit = 1, which, in contrast to the mean-field prediction [7]
(see also Appendix E), correctly implies the nonexistence of a
Hopf bifurcation.

IV. NONLINEAR ANALYSIS
AND THE SNIPER BIFURCATION

Going beyond linear stability, we perform a nonlinear anal-
ysis of Eqs. (8)–(10) through numerical continuation [37]. The
resulting bifurcation diagrams are shown in Figs. 2(a) and 2(b)
and the complete phase diagram in Fig. 2(d), which we now
explain in detail.

We start with the noninteracting case with K = 0 [see
Fig. 2(a)]. For small values of J , there exists only one (trivial)
stable steady state with mμ

s = 0, as explained in the previous
section. Increasing J to ln [z/(z − 2)]/2 we find a pitch-
fork bifurcation [red dot in Fig. 2(a)], which coincides with
qs(J, 0) = qcrit , and beyond which the trivial state becomes
unstable. At the pitchfork bifurcation, four stable branches
[blue lines in Fig. 2(a)] and four unstable branches [red dashed
lines in Fig. 2(a)] of steady states emerge. Unstable branches
have zero magnetization in one of the lattices, while stable
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FIG. 2. (a), (b) Bifurcation diagram of the magnetization (ma
s , mb

s ) in the absence [(a) K=0] and presence [(b) K=0.01] of nonreciprocal
coupling as a function of J . Inset of (b): Magnification of the bifurcation diagram around the Hopf bifurcation projected onto the (mb

s , J ) plane
(see black box). (c) Temporal evolution of the magnetization for (J, K ) = (0.35991, 0.01) close to the degenerate saddle-node-infinite-period
(SNIPER) bifurcation at JSNP(K ). The magnetization oscillates coherently between four ghost states A→B→C→D (for K<0 the direction
is reversed), which eventually terminate in the four respective stable branches at and beyond the SNIPER bifurcation. The lifetime T in
these ghost states diverges upon approaching JSNP(K ) (see Fig. 3). (d) Phase diagram of mμ

s : the gray region depicts the regime of coherent
oscillations, with the black lines indicating isolines with fixed oscillation period, and the blue line indicating the Hopf bifurcations where
qs = qcrit [Eq. (20)]; in the light-green region the magnetization is stationary and nonzero. In all panels we consider z = 4.

branches exhibit nonzero equilibrium magnetization because
of spontaneously broken symmetry in both lattices.

Upon setting K �= 0, the pitchfork bifurcation turns into
a Hopf bifurcation [blue dot in Fig. 2(b)], whose J value
depends on K through the relation qs(J, K ) = qcrit [blue line
in Fig. 2(d); see Appendix C for explicit results]. Increasing J
beyond the Hopf bifurcation, there is a regime with coherent
oscillations [gray area in Figs. 2(b) and 2(d)]. In Fig. 2(d) we
identify the isolines of fixed-period oscillations (black lines).
Upon further increasing J at fixed K , we observe a nonlin-
ear transition from coherent oscillations to a nonzero steady
magnetization [light-green region in Fig. 2(d)], which is set
by a degenerate saddle-node-infinite-period (SNIPER) bifur-
cation [green dots in Fig. 2(b)]. Approaching the SNIPER
bifurcation from below, the magnetization in both lattices
starts to oscillate between four long-lived ghost states [see
Fig. 2(c)]. These four long-lived states correspond to the
virtual configuration, in which the respective lattices exert a
quasistatic magnetic field on each other, and are characterized
by a critical slowing down of the dynamics in the vicinity of
the impending SNIPER bifurcation. The residence time within
these ghost states diverges algebraically as (see Fig. 3)

T ∝ [JSNP(K ) − J]−1/2, (23)

where JSNP(K ) is the J value of the SNIPER bifurcation at a
given K [green line in Fig. 2(d)]. At the SNIPER bifurcation,
four pairs of one stable branch [blue lines in Fig. 2(b)] and one
unstable branch [red dashed lines in Fig. 2(b)] emerge. Note
that these stable states with nonzero stationary magnetization
also exist on the finite square lattice system (see proof in [34]).

The bifurcation diagram obtained with the mean-field ap-
proximation has similar qualitative features as in Figs. 2(a)
and 2(b) (i.e., a Hopf and SNIPER bifurcation); however, the
phase diagram displays a constant Hopf line at a fixed J ,

independent of K (see [7] and Fig. 5). In Fig. 2(d) we see
that the Hopf line with the BG approximation is K-dependent,
closely resembling the empirical phase diagram on the cubic
lattice (see [7]).

V. SPATIOTEMPORAL DYNAMICS

The results in Figs. 1(d)–1(f) reveal a high degree of local
order in the coherent oscillatory regime. To systematically
analyze spatiotemporal patterns in states with coherent oscil-
lations, we perform discrete-time Monte Carlo simulations of
the nonreciprocal Ising system with 2 × N ≈ 3 × 103 spins
on the all-to-all (z=N), the z=4 Bethe, and the square lattice

FIG. 3. Algebraic divergence of the residence time T within
a ghost state close to the degenerate saddle-node-infinite-period
(SNIPER) bifurcation. Approaching the SNIPER bifurcation from
below, the residence time diverges algebraically according to
Eq. (23). Here, we have K = 0.1 and z = 4, for which the SNIPER
bifurcation occurs at JSNP ≈ 0.4477. Results are obtained with the
continuation package MATCONT [37].

024207-4



LOCAL ORDER CONTROLS THE ONSET OF … PHYSICAL REVIEW E 111, 024207 (2025)

FIG. 4. (a)–(c) Spectral density 〈|�̂a
k (ω)|〉 of modes of coherent oscillations [Eq. (24)] on the (a) mean-field, (b) Bethe, and (c) square

lattice (see [34] for animations of the dynamics on the lattices). Note that the nonzero eigenvalues of the mean-field lattice are degenerate,
which explains the white region in (a). The values for J are chosen in the respective oscillatory regimes (see Appendix G for details), and
K = 0.3 for all three lattices. 〈|�̂a

k (ω)|〉 is averaged over 500 independent trajectories, and ω0 = argmax〈|�̂a
1 (ω)|〉 is the natural oscillation

frequency. Resonances are visible at multiples of 2ω0, since we ignore the sign of projections. Insets: Temporal development of the projected
microscopic states onto the eigenvectors of the Laplacian matrix of respective lattices. Colors denote three selected eigenvalues (and thus
spatial scales) indicated by the dots in the main plot.

with periodic boundary conditions. The respective systems are
described in detail in Appendix G. For a consistent notion
of “spatial scale” on all lattices, we perform a graph-spectral
analysis [38].

Let L be the N×N symmetric Laplacian matrix of one of
the above graphs with elements Lii=z, Li j= − 1 when spins
i and j are connected, and Li j=0 otherwise. The Laplacian
has N orthonormal eigenvectors Lψk=lkψk, k ∈ {1, ..., N}
with corresponding eigenvalues lk ordered as l1� · · ·�lN . The
lowest eigenvalue, corresponding to ψ1=N−1/2(1, . . . , 1)T,
vanishes, i.e., l1=0 [39]. For the mean-field lattice, all remain-
ing N−1 eigenvalues are degenerate, l2= . . . =lN=N [40], but
not for the square and Bethe lattices (see Fig. 6).

We express the microscopic state of the lattice μ in
time step n ∈ {0, ..., nmax} as a column vector σμ(n) =
[σμ

1 (n), ..., σμ
N (n)]T and project it onto the respective eigen-

vectors, �
μ

k (n) ≡ ψT
k σμ(n). These spatial modes are shown

as insets in Figs. 4(a)–4(c), where we see that for the Bethe
and square lattice oscillations are pronounced on large scales
(small k) and suppressed on small scales (large k). In the
mean-field system the spatial modes are equal on all scales
due to the degenerate eigenvalues.

To unravel the spatiotemporal structure, we compute the
spectral density via the discrete Fourier transform,

〈∣∣�̂μ

k (ω)
∣∣〉 ≡

〈∣∣∣∣∣
nmax∑
n=0

∣∣�μ

k (n)
∣∣e−i2πωn/nmax

∣∣∣∣∣
〉
, (24)

where 〈·〉 indicates averaging over independent trajectories
and the absolute value takes into account that the sign of the
projection is immaterial. The results are shown in Figs. 4(a)–
4(c) for coherent oscillations on the a lattice (those for the
b lattice are equivalent), with resonances at even multiples
of the respective natural frequency ω0 = argmax〈|�̂a

1 (ω)|〉,
which is the most dominant frequency in the spectrum and
scales as ω0 ∝ 1/T close to the SNIPER bifurcation. The
spatiotemporal dynamics on the Bethe and square lattices is
qualitatively the same, with small-scale and high-frequency
modes suppressed. Thus, coherent oscillations are carried by
large-scale low-frequency modes, which agrees with the large
local correlations Cμμ(t ) shown in Fig. 1(e).

VI. CONCLUDING REMARKS

We have explained the collective dynamics of the nonre-
ciprocal Ising system on the level of both local and global
order beyond the mean-field approximation. A critical thresh-
old magnitude of local order within the respective lattices
was found to control the emergence of coherent oscillations
of the global order parameter. Upon increasing interactions,
ghost states emerge and the residence time in either of them
eventually diverges, giving rise to a dynamically trapped ter-
minal state via a saddle-node-infinite-period bifurcation. The
terminal state depends on the initial condition; the dynamics
in this regime is thus nonergodic.

Strikingly, during coherent oscillations of global order,
a high degree of local order is preserved [see Fig. 1(d)].
This implies nontrivial spatiotemporal correlations between
spins, confirmed by a spectral-density maximum at large-scale
low-frequency modes. In stark contrast, on the mean-field
(all-to-all) lattice there is no distinction between different spa-
tial modes, annihilating any notion of spatial structure. Thus,
accounting for nearest-neighbor correlations is essential for a
correct understanding of the dynamics of nonreciprocal matter
with a short, or more generally, finite range of interactions.

Our work provides a comprehensive microscopic under-
standing of dynamic collective phenomena in nonreciprocal
matter without conservation laws based on the nonreciprocal
Ising model. What remains elusive are multiple (>2) coupled
lattices, spatially heterogeneous/extended systems [41], as
well as the thermodynamic cost of dynamical states and bifur-
cations [42–45]. Moreover, considering the relevance of con-
servation laws [13,16,46,47], it will be essential to develop a
theoretical framework for the nonreciprocal Ising model with
Kawasaki dynamics. These will be addressed in future work.
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APPENDIX A: DERIVATION OF EQS. (8)–(10)

From the master equation (2), we directly obtain dynamical equations for the first two moments of single-spin values [see
also Eqs. (28) and (29) in [26]]:

τ
d
〈
σ

μ
i (t )

〉
dt

+ 〈
σ

μ
i (t )

〉 = 〈
σ

μ
i (t ) tanh

(
�Eμ

i /2
)〉
, (A1)

τ
d
〈
σ

μ
i (t )σ ν

j (t )
〉

dt
+ 2

〈
σ

μ
i (t )σ ν

j (t )
〉 = 〈

σ
μ
i (t )σ ν

j (t )
[

tanh
(
�Eμ

i /2
) + tanh

(
�E ν

j /2
)]〉

, (A2)

where 〈 f (t )〉 ≡ ∑
σ P(σ; t ) f (σ ). Equations (A1) and (A2) are exact (but not yet closed) equations for the first two moments

evolving under Glauber dynamics, and will serve as our starting point to derive equations for the global and local order
parameters, which we derive in two steps: First, we sum Eqs. (A1) and (A2) over all spins and spin pairs. Upon doing this,
the left-hand sides of Eqs. (A1) and (A2) transform into

1

N

N∑
i=1

(
τ

d
〈
σ

μ
i (t )

〉
dt

+ 〈
σ

μ
i (t )

〉) = τ
dmμ(t )

dt
+ mμ(t ), (A3)

1

zN

N∑
i=1

∑
〈i| j〉

(
τ

d
〈
σ

μ
i (t )σμ

j (t )
〉

dt
+ 2

〈
σ

μ
i (t )σμ

j (t )
〉) = τ

dqμμ(t )

dt
+ 2qμμ(t ), (A4)

1

N

N∑
i=1

(
τ

d
〈
σ a

i (t )σ b
i (t )

〉
dt

+ 2
〈
σ a

i (t )σ b
i (t )

〉) = τ
dqab(t )

dt
+ 2qab(t ). (A5)

Second, we need to evaluate the right-hand sides of Eqs. (A1) and (A2) after summation over all spins and spin pairs. To do this,
we note that �Eμ

i can take on a discrete (enumerable) set of values. Consider a spin with l ∈ {0, 1, ..., z} neighboring up spins
on the same lattice and n ∈ {0, 1} neighboring up spins on the opposing lattice. We want to compute the change in energy upon
flipping this spin. Based on Eq. (1) we can parametrize this change in energy upon flipping the spin as

�Eμ
i = 2σ

μ
i U μ

l,n, (A6)

where U μ

l,n is given by Eq. (11). Using this parametrization, we evaluate the right-hand sides of Eqs. (A1) and (A2)

1

N

N∑
i=1

〈
σ

μ
i tanh

(
�Eμ

i /2
)〉 = 1

N

N∑
i=1

〈
tanh

(
U μ

l,n

)〉 =
z∑

l=0

1∑
n=0

Pμ

l,n(t ) tanh
(
U μ

l,n

)
, (A7)

1

zN

N∑
i=1

∑
〈i| j〉

〈
σ

μ
i σ

μ
j tanh

(
�Eμ

i /2
)〉 = 1

zN

N∑
i=1

∑
〈i| j〉

〈
σ

μ
j tanh

(
U μ

l,n

)〉 = 1

z

z∑
l=0

1∑
n=0

(2l − z)Pμ

l,n(t ) tanh
(
U μ

l,n

)
, (A8)

1

N

N∑
i=1

〈
σ a

i σ b
i tanh

(
�Ea

i /2
)〉 = 1

N

N∑
i=1

〈
σ b

i tanh
(
U a

l,n

)〉 =
z∑

l=0

1∑
n=0

(2n − 1)Pμ

l,n(t ) tanh
(
U a

l,n

)
. (A9)

For the first equality in Eqs. (A7)–(A9) we used
tanh (�Eμ

i /2) = tanh (σμ
i U μ

l,n) = σ
μ
i tanh (U μ

l,n), together
with (σμ

i )2 = 1. For the second equality, we note that terms
such as 〈tanh (U μ

l,n)〉 represent a weighted sum over all
possible combinations of the possible values that tanh (U μ

l,n)
can attain. The weights are given by the time-dependent
probability Pμ

l,n(t ) to find an up or down spin with a
specific local environment. By definition, this probability
is normalized

∑
l,n P

μ

l,n(t ) = 1. Combining Eqs. (A3)–(A5)
and (A7)–(A9) we obtain Eqs. (8)–(10).

APPENDIX B: DERIVATION OF EQ. (14)

Here, we derive Eq. (14) based on the BG approxima-
tion. We focus on the probability of picking a spin on the
a lattice with a given specific local environment. The same
reasoning will also apply for picking a spin on the b lattice.
Recall that Pa±

l,n (t ) is the probability at time t to find an up
(+) or down (–) spin with l neighboring up spins on the a
lattice and n neighboring up spins on the b lattice. On the BG
level, we assume ideal mixing of nearest-neighbor spin pairs,
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resulting in the following expressions:

Pa+
l,n = [Na

+/N]︸ ︷︷ ︸
probability
for up spin

on the a lattice

×
[(

Naa
++
l

)(
Naa

+−/2

z − l

)/(
Naa

++ + Naa
+−/2

z

)]
︸ ︷︷ ︸

probability for
l neighboring up

spins on the a lattice

×
[(

Nab
++
n

)(
Nab

+−
1 − n

)/(
Nab

++ + Nab
+−

1

)]
︸ ︷︷ ︸

probability for
n neighboring up

spins on the b lattice

, (B1)

Pa−
l,n = [Na

−/N]︸ ︷︷ ︸
probability

for down spin
on the a lattice

×
[(

Naa
−+/2

l

)(
Naa

−−
z − l

)/(
Naa

−+/2 + Naa
−−

z

)]
︸ ︷︷ ︸

probability for
l neighboring up

spins on the a lattice

×
[(

Nab
−+
n

)(
Nab

−−
1 − n

)/(
Nab

−+ + Nab
−−

1

)]
︸ ︷︷ ︸

probability for
n neighboring up

spins on the b lattice

, (B2)

where, for example, Nab
+− is the total number of nearest-

neighbor spin pairs with an up spin on the a lattice and a
down spin on the b lattice. To relate Nab

+− and the other spin
pair numbers to the global and local order, we make use of the
following exact relations for periodic lattices:

2Nμμ
±± + Nμμ

+− = zNμ
± , (B3)

Nab
±± + Nab

±∓ = Na
±, (B4)

in combination with

Nμ
± = N (1 ± mμ)/2. (B5)

Furthermore, we use the definition of local order given by
Eqs. (5) and (6) to write

qμμ = 2(Nμμ
++ + Nμμ

−− − Nμμ
+−)/zN

= 1 − 4Nμμ
+−/zN, (B6)

qab = (Nab
++ + Nab

−− − Nab
+− − Nab

−+)/N

= 1 − 2Nab
+−/N − 2Nab

−+/N

= 1 + ma − mb − 4Nab
+−/N, (B7)

where in the last line we used the relation

mb − ma = 2(Nab
−+ − Nab

+−)/N. (B8)

Using the relations (B3)–(B7) we obtain the following expres-
sion for the spin pairs within the same lattice:

Nμμ
±± = (z/8)N (1 ± 2mμ + qμμ), (B9)

Nμμ
±∓ = (z/4)N (1 − qμμ), (B10)

and for the spin pairs between the two opposing lattices

Nab
±± = (1/4)N (1 ± ma ± mb + qab), (B11)

Nab
±∓ = (1/4)N (1 ± ma ∓ mb − qab). (B12)

Inserting Eqs. (B9)–(B12) into Eqs. (B1) and (B2) and tak-
ing the thermodynamic limit N → ∞ while keeping mμ(t ),
qμμ(t ), and qab(t ) fixed, we obtain Eq. (14).

APPENDIX C: STEADY-STATE LOCAL ORDER

The trivial steady state is given by the disordered state with
mμ

s = 0 and qab
s = 0. To solve for the steady state of the local

order, denoted as qs(J, K ), we need to solve

qs(J, K ) = 1

z

z∑
l=0

1∑
n=0

(2l − z)(P+
l + P−

l ) tanh
(
U a

l,n

)
, (C1)

where P±
l (qs) are the probabilities (14) evaluated at steady-

state values given by Eq. (19). Equation (C1) can be solved for
specific integer values of z. For example, for z = 2 we obtain

qs(J, K )|z=2 =
2 −

√
4 − [∑

n=± tanh (2J + nK )
]2∑

n=± tanh (2J + nK )
.

For z = 4, the solution can be written as

qs(J, K )|z=4 = S (J, K ) − (1/2)
√

−4S (J, K )2 + 2H(J, K ) + Q(J, K )/S (J, K ), (C2)

where we have introduced the auxiliary functions

H(J, K ) ≡ 3 cosh (4J )[cosh (4J ) + cosh (2K )]

sinh2 (2J )[cosh (4J ) − 2 sinh2 (K )]
, (C3)

Q(J, K ) ≡ 16

(∑
n=±

[tanh (4J + nK ) − 2 tanh (2J + nK )]

)−1

, (C4)

S (J, K ) ≡ (1/2)
√

(2/3)H(J, K ) + [Q(J, K )/6][A(J, K ) + �0(J, K )/A(J, K )], (C5)

A(J, K ) ≡ 2−1/3

(
�1(J, K ) +

√
�2

1(J, K ) − 4�3
0(J, K )

)1/3

, (C6)
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�0(J, K ) ≡ −(3/4)
∑
n=±

[tanh (2J+nK ) + tanh (4J+nK )]
∑
n=±

[tanh (2J+nK ) − tanh (4J+nK )], (C7)

�1(J, K ) ≡216 cosh (2J )cosh (2K )sech(4J−K )sech(4J+K ) sinh3 (2J ) sinh2 (K )[cosh (4J )+ cosh (2K )]−2. (C8)

APPENDIX D: OSCILLATORY INSTABILITY

Here, we prove that M2(qs; J, K �= 0) �= 0. To see this, we
explicitly write out the first sum over n in Eq. (18):

M2(qs; J, K ) =
z∑

l=0

(P+
l + P−

l )[tanh ([2l−z]J+K )

− tanh ([2l−z]J−K )]. (D1)

Note that P±
l (qs) > 0 for qs ∈ (−1, 1), which follows

straightforwardly from Eq. (19). Furthermore, since
tanh (x) is an increasing function of x, we have
tanh ([2l − z]J + K ) − tanh ([2l − z]J − K ) > 0 for K > 0
and tanh ([2l − z]J + K ) − tanh ([2l − z]J − K ) < 0 for
K < 0. Hence, M2(qs; J, K ) is given by a sum over strictly
positive (for K > 0) or negative (for K < 0) terms, rendering
M2(qs; J, K �= 0) �= 0. This results in complex eigenvalues
for λ±(qs; J, K ) as shown in Fig. 1(b).

APPENDIX E: MEAN-FIELD APPROXIMATION

A less accurate technique to obtain approximate evolution
equations is the mean-field (MF) approximation (originally
developed in [48]), where one makes the rudimentary (uncon-
trolled) assumption〈

tanh
(
�Eμ

i /2
)〉 ≈ tanh

〈
�Eμ

i /2
〉
, (E1)

yielding the evolution equations

τ
dma(t )

dt
+ ma(t ) = tanh [zJama(t ) + Kamb(t )],

τ
dmb(t )

dt
+ mb(t ) = tanh [zJbmb(t ) + Kbma(t )], (E2)

which are exact on the fully connected mean-field lattice,
where the local order is trivial (i.e., there is no sense of
“local”), qμν (t ) = mμ(t )mν (t ), and therefore Cμν (t ) = 0. A
linear stability analysis around the trivial steady state mμ

s = 0
for Ja = Jb = J and Ka = −Kb = K leads to a linear stability
equation where the eigenvalues of the linear stability matrix
are given by

λMF
± (J, K ) = (zJ − 1) ± iK. (E3)

Hence, the Hopf bifurcation occurs at J = 1/z and K �= 0,
such that Re(λMF

± ) = 0 and Im(λMF
± ) �= 0. This corresponds to

a straight vertical line in the (J, K ) plane, as shown in Fig. 5(a)
and also found in [7]. Notably, in the MF approximation we
do not observe a critical value for local order, which is present
in the more accurate BG approximation.

APPENDIX F: MONOMER APPROXIMATION

Another approximation technique we developed in this
work is what we call the “monomer approximation.” It is

more accurate than the MF but less accurate than the BG
approximation.

The conceptual difference between the MF on the one
hand, and the monomer and BG approximations on the other
hand, lies in the treatment of the average 〈tanh (�Eμ

i /2)〉.
Whereas the MF approximation simply moves the average to
the argument as shown in Eq. (E1), the monomer and BG
approximations use the fact that the value of �Eμ

i /2 lies in
an enumerable set given by U μ

l,n ≡ [2l − z]Jμ + [2n − 1]Kμ

with l ∈ {0, .., z} and n ∈ {0, 1}. This allows for an explicit
summation

〈
tanh

(
�Eμ

i /2
)〉 =

z∑
l=0

1∑
n=0

Pμ

l,n(t ) tanh
(
U μ

l,n

)
, (F1)

where only the probability Pμ

l,n(t ) has to be approximated.
Similar to the BG approximation, the resulting evolution

equations in the monomer approximation are governed by
Eqs. (8)–(10), but the time-dependent probabilities are differ-
ent and read (the derivation is given in [34])

Pa
l,n(t ) = 2Cz

l [1 + ma(t )]l [1 + mb(t )]n

[1 − ma(t )]l−z[1 − mb(t )]n−1
, (F2)

and Pb
l,n(t ) is obtained by replacing ma(t ) with mb(t ) in

Eq. (F2). Since Pa
l,n(t ) is independent of the local order

qμν (t ), this implies that qμν (t ) is slaved by mμ(t ); however,
qμν (t ) �= mμ(t )mν (t ). Performing a linear stability analysis
around the trivial steady state mμ

s = 0 for Ja = Jb = J and
Ka = −Kb = K , we obtain a linear stability equation where
the eigenvalues of the linear stability matrix can neatly be
written as

λ̂±(qs; J, K ) = [zqs(J, K ) − 1] ± iM̂2(J, K ), (F3)

FIG. 5. Phase diagram for global order mμ
s obtained with the

mean-field (MF) approximation (a) and the monomer approxima-
tion (b) for the perfect nonreciprocal setting with Ja = Jb = J and
Ka = −Kb = K . In the MF approximation the Hopf bifurcation (blue
line) is set by J = 1/z. In the monomer approximation, the Hopf bi-
furcations (blue line) are set by a critical local order qs = 1/z, which
is more similar to the Bethe-Guggenheim approximation where
qs = 1/(z − 1) [see Fig. 2(d)].
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TABLE I. Overview of approximation techniques and their dy-
namical equations.

Approx.
technique mμ(t ) qμν (t ) Hopf

MF (E2) = mμ(t )mν (t ) J=1/z

Monomer (8)+(F2) (9)–(10)+(F2);
slaved by mμ(t )

qs=1/z

BG (8)+(14) (9)–(10)+(14);
not slaved

qs=1/(z−1)

where qs(J, K ) is the steady-state value of the local order in
the monomer approximation, and

M̂2(J, K ) = 2
z∑

l=0

1∑
n=0

(2n − 1)Cz
l tanh

(
U a

l,n

)
. (F4)

From this follows that the Hopf bifurcation occurs at qs = 1/z
and K �= 0, such that Re(λ̂±) = 0 and Im(λ̂±) �= 0. Hence, as
within the BG approximation, we also find the existence of a
critical local order in the monomer approximation. Contrary
to the MF approximation, the Hopf line is not a straight
vertical line in the (J, K ) plane, as shown in Fig. 5(b).

To provide a concise overview of the various approxi-
mation techniques, we summarize in Table I the respective
evolution and conditions for the Hopf bifurcation.

APPENDIX G: KINETIC MONTE CARLO SIMULATIONS

For the results shown in Figs. 1(c), 1(d) (black dashed
lines), and 4 we performed kinetic Monte Carlo (MC) simula-
tions on three different types of lattices: (i) the fully connected
MF lattice, (ii) the Bethe lattice, and (iii) the square lat-
tice with periodic boundary conditions. Simulations on the
Bethe lattice were performed using the random graph algo-
rithm [31,32], which works as follows: Consider a Bethe
lattice with coordination number z. First, we create a Cayley
tree of i = {1, ..., N} spins with coordination number z. The
spins on the outer layer are connected to one spin on the inner
layer. To create the remaining z − 1 connections, we randomly
pair spins on the outer layer to other spins on the outer layer.
The final result is a Cayley tree with random connections on
the outer layer. Note that for both lattices a and b we create

TABLE II. Simulation parameters for results shown in Fig. 4.

Lattice size (N) MC steps No. traj. J (kBT ) K (kBT )

Mean field 1500 N × 103 500 1.5/N 0.3
Bethe 1457 N × 103 500 0.5 0.3
square 40 × 40 N × 103 500 0.6 0.3

new random connections. For large N , it has been shown that
the Ising model on an ensemble of such random graphs is
equivalent to the Ising model on a Bethe lattice [31]. Indeed,
for large N we find perfect agreement between the simulations
and our theory, as shown in Figs. 1(c) and 1(d). For the MF
lattice, we connect all spins with each other, resulting in a
fully connected graph.

1. Simulation setup

In Table II we summarize the size of the system, the
number of trajectories, and the parameter settings that were
used to obtain the spectral density shown in Fig. 4. As initial
conditions, we selected a randomly mixed configuration of up
and down spins for fixed magnetization.

For the results shown in Figs. 1(c) and 1(d) we used a Bethe
lattice with system size N = 118 097. Such a large system
size was not feasible for the setup of Fig. 4 since the spectral
density 〈|�̂μ

k (ω)|〉 must be averaged over many independent
trajectories, resulting in memory issues for too large N .

2. Eigenvalues of Laplacian matrix

In Fig. 4 we plot the spectral density 〈|�̂μ

k (ω)|〉 as a func-
tion of the eigenvalues lk of the Laplacian matrix L. To obtain
the eigenvalues, we numerically diagonalized the Laplacian L
in Python, and the resulting eigenvalues are shown in Fig. 6.
Note that for the mean-field lattices, all eigenvalues except the
first are degenerate and equal to l2 = · · · = lN = N .

3. Animations

To visualize the dynamics of the nonreciprocal Ising model
on the mean-field lattice, Bethe lattice, and square lattice, we
have provided animations in [34]. In each animation, we show
three independent simulations on the aforementioned lattices,
with the coupling strengths (J, K ) reported in Table II. More
information about the animations is given below:

FIG. 6. Eigenvalues lk of the Laplacian matrix L for the mean-field lattice (a), Bethe lattice (b), and square lattice (c). For the mean-field
lattice, all eigenvalues except for the first are degenerate with value l2 = ... = lN = N , where N is the system size given in Table II. The Bethe
lattice has a spectral gap between the lowest eigenvalue l1 = 0 and l2.
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(1) “MF_lattice.gif” shows simulations on the mean-field
lattice for N = 2000 spins, where each spin is connected to
every other spin. For illustrative purposes, the edges between
spins are not shown.

(2) “Bethe_lattice.gif” shows simulations on the Bethe
lattice for N = 131 21 spins, corresponding to a Bethe lattice

with eight layers and a coordination number of z = 4. For
illustrative purposes, only the first six layers of the Bethe
lattice are shown.

(3) “Square_lattice.gif” shows simulations on the square
lattice for N = 122 × 122 spins.
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